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Unfolding dimension and the search for functional markers in the human electroencephalogram
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A biparametric approach to dimensional analysis in terms of a so-called ‘‘unfolding dimension’’ is intro-
duced to explore the extent to which the human EEG can be described by stable features characteristic of an
individual despite the well-known problems of intraindividual variability. Our analysis comprises an EEG data
set recorded from healthy individuals over a time span of 5 years. The outcome is shown to be comparable to
advanced linear methods of spectral analysis with regard to intraindividual specificity and stability over time.
Such linear methods have not yet proven to be specific to the EEG of different brain states. Thus we have also
investigated the specificity of our biparametric approach by comparing the mental states schizophrenic psy-
chosis and remission, i.e., illness versus full recovery. A difference between EEG in psychosis and remission
became apparent within recordings taken at rest with eyes closed and no stimulated or requested mental
activity. Hence our approach distinguishes these functional brain states even in the absence of an active or
intentional stimulus. This sheds a different light upon theories of schizophrenia as an information-processing
disturbance of the brain.@S1063-651X~98!05602-5#

PACS number~s!: 87.10.1e, 87.90.1y, 02.70.Rw
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I. INTRODUCTION

The human electroencephalogram~EEG! comprises elec-
tric signals reflecting the underlying neural dynamics of
brain. Accordingly, EEG attracts attention from differe
perspectives: on the one hand, researchers from biophy
theoretical biology, and related disciplines are mainly int
ested in the mechanisms generating these signals@1–3#; on
the other hand, physicians and psychologists are conce
with the identification of EEG patterns related to~mal! func-
tional brain states@4–7#.

A traditional approach linking these two perspectives
the assessment of the rhythmic activity in terms of time
ries analysis. The classical view of the EEG assumes
signal generator to be a linear oscillating system@1,8#. This
approach has led to broad application of spectral analysis
related techniques to analyze and describe the EEG. Spe
patterns have been scrutinized for clinical relevance an
has been shown that these patterns carry individually spe
information @9# that remains stable over time spans of up
several years. The diagnostic relevance of the EEG, h
ever, presents another picture. A critical evaluation of
EEG research that has taken place over the past few dec
offers a disappointing perspective on these classical
proaches@10#.

Until now there hardly seems to be a particular feature
the human EEG that clearly indicates specific psychopa
logical states or syndromes. Furthermore, it has not yet b
possible to make reliable psychiatric diagnoses or progno
with the help of these classical EEG approaches@11#. Hence
there is a dire need for an alternative to these approache
EEG analysis that places demands on the intraindividual
bility and functional specificity of derived quantitative me
sures despite the well-known problems of intraindividu
variability.
571063-651X/98/57~2!/2115~8!/$15.00
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More recently, nonlinear time series analysis of EEG h
become a focus of interest@12#: hints for possibly chaotic
attractors underlying the EEG supply theoretically orien
scientists with information on degrees of freedom and
degree of dissipation to be explained by a model while,
practice, researchers wish to find the same measures of c
to be of clinical relevance, e.g., for diagnostic purposes.

Regarding the most popular of these quantities, nam
the so-calledD2 or correlation dimension@13#, however,
things do not yet seem to be very promising: The exten
which the above-mentioned individual specificity can be
produced~i.e., the extent to whichD2 is stable! remains
unclear and the extent to which EEG is distinguishable fr
a linear stochastic process@14–17# is still debatable. This
indicates a real need to improve correlation dimension an
sis.

D2 analysis starts with reconstructing an appropri
phase space. This is usually done by embedding a si
~univariate! time series inm dimensions according to th
method of time delays@18#. This makes use of the sam
signalm times:m successive points are regarded as indep
dent coordinates each separated by one delay timet from the
preceding one:

Xt5x~ t !,x~ t2t!, . . . ,x„t2~m21!t…. ~1.1!

In the case that several time series are simultaneously a
able, a parallel embedding scheme may be used@19#
whereby the various channels included are regarded to
linearly independent and are therefore taken to comprise
m dimensions:

Xt5x1~ t !,x2~ t !, . . . ,xm~ t !. ~1.2!

Insofar as different EEG channels may represent differ
signal generators, the two approaches~delay-time coordi-
2115 © 1998 The American Physical Society
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nates from a single location versus parallel embedding
tained simultaneously from the whole head surface! are not
necessarily expected to lead to the same numerical res
Investigations into this question might be best done with
concept of mutual dimension@20,21#. Since we are in this
work only concerned with differences between function
states and not with the number of generators responsible
each state, it suffices to select one of the above two
proaches and simply stick with it. The procedure in eith
case is the same: Once the correspondingm-dimensional
vectors are built, one calculates the so-called correlation
tegral@13# and evaluates therefrom the correlation dimens
D2(m). Normally this procedure is repeated for a given s
ries of measurements by successively increasing the em
ding dimensionm. For m sufficiently large, saturation fo
D2(m) is expected to occur and this saturation value is ta
to be the correlation dimension.

A shortcoming of this approach lies in only using info
mation form sufficently large while discarding any informa
tion for low m. To overcome this shortcoming, the conce
of ‘‘unfolding dimension’’ has been recently proposed. O
hereby considers the following biparametrization@22#:

D2~m!5b0@12exp~2m/m* !#. ~1.3!

b0 indicates the attractor dimension, whilem* , the so-called
unfolding dimension, is a measure of the rate at which
attractor unfolds with increasingm. One thus takes informa
tion for low as well as for highm into account. An example
is shown in Fig. 1.

This approach has already brought two interesting pr
erties to light: first of all, applied to psychophysiologic
time series, it has become possible to statistically distingu
the human EEG of healthy persons from their correspond
so-called surrogate I or II data@14#, i.e., data with the same
Fourier spectra as the original, but without any phase co
lation as one might obtain from a linear stochastic proce
This was also achieved for cases in which traditional dim
sional analysis failed to make this distinction~Fig. 2!.

This distinction is important for a dimension algorith
because it proves the ability to retrieve information not v
ible within the power spectrum. On the other hand, failure
achieve this distinction would have shed doubt upon
overall relevance of dimensional analysis to the understa
ing of EEG signals, even though the relevance of surrog
data testing in EEG analysis is not completely clear yet@17#.

Secondly, this biparametric approach evidenced that
individual EEG of different healthy probands recorded ov
time did not turn out to be stochastic as monitored throu
the so-called confusion index@22# ~see below!. This nonsto-
chasticity implies a certain statistically significantintra-
individual stability and specificity of the human EEG
agreement with the above-mentioned findings of spec
analysis.

The distinction of the human EEG from its correspondi
surrogate data as well as the nonstochasticity of the i
vidual human EEG are prerequisites for any attempt to re
the goal of investigating functional brain states on a per
dividual basis by means of nonlinear dimensional analy
Accordingly, the present work has two objectives:~i! To
extend the analysis of a normative-EEG study to include
b-
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to 8 artifact-free, 20-s EEG epochs and 2 channels on each
three widely separated recording days.~ii ! To carry out, in
the spirit of our biparametric approach, a meta-analysis of a
earlier EEG-psychosis study in which—by means of conven
tional D2 analysis—no statistically significant interindividual
or intraindividual difference between psychosis and remis
sion was evident@23#.

The first objective is meant to substantiate the above
mentioned apparent tendency found in@22# ~briefly outlined
below in Sec. II! to support the idea that an individual’s EEG
is not stochastic over time, thus demonstrating the achieve
ment of the above-mentioned prerequisites. We will see be
low that the indicated extension confirms the intraindividua
stability over a period of at least 5 years whereby no pro

FIG. 1. Biparametric description of the curveD2(m) from two
different human EEG samples.~a! The fit yields b055.44,
m* 55.85 ~see text for explanations of symbols!. The time delay
embedding procedure@18# is applied. The embedding dimensionm
is defined as in Eq.~1.1!. ~b! The fit yieldsb057.04, m* 55.13.
The multichannel embedding procedure@19# is applied, i.e., each
channel is assumed to be a coordinate in phase space. The emb
ding dimension is varied by adding the simultaneous signals from
more and more electrodes.
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57 2117UNFOLDING DIMENSION AND THE SEARCH FOR . . .
nounced channel dependence seems to be manifest. T
shown in Sec. III.

The second objective is meant to explore the idea
nonlinear analysis in terms of the biparametric approach
EEG may be useful to investigate different brain states. T
is demonstrated on the particular problem of ‘‘diagnosin
the functional brain state of psychosis in comparison to
state of remission~full recovery! in the same person. W
show in Sec. IV that the mentioned meta-analysis indicate
difference between the resting functional brain states, p
chosis versus remission, even in the absence of exte
stimuli. This difference is mainly explained through diffe
ences in the respective unfolding dimensions.

In Sec. V, the outcome will be measured with the succ
of conventional dimensional analysis and advanced lin
methods already used to test similar hypotheses@9,24#. By
comparison, we regard the major impact of the present w
to lie in its offer of a route for answering questions on t
existence of stable and specific nonlinear EEG markers
nonreactive, functional brain states.

II. DATA AND METHODS

A. EEG data

Two different independent populations and analyses
involved in this investigation:

~a! An EEG normative group encompassing 23 heal
individuals~average age 28, minimum age 22, maximum a
33! recorded at rest with eyes closed at 3 different times:t1,
t25t1114 days, andt35t215 years as described in@22#.
In the present work, we extend our previous analysis invo
ing only one EEG channel, namely,P3-O1, to now include
the EEG channelsT3-T5 andT5-O1 according to the Inter-
national 10-20 scheme@25# ~Fig. 3! sampled at 256 Hz and
low-pass filtered with 32 Hz. In addition, we now also ta

FIG. 2. Unfolding dimensionm* vs asymptotic correlation di-
mensionb0 @see Eq.~1.3!# for an EEG segment (s) and 10 surro-
gates (3) @delay-time embedding protocol~1.1!#. A linear regres-
sion for the latter yields the straight line~2.1! and the dashed-dotte
~dotted! lines represent the 95%~99%! confidence level for the
surrogates. If only the correlation dimension is considered~projec-
tion onto the abscissa!, the correlation dimension of the EEG
indistinguishable from those of its surrogates. The biparame
analysis, however, reveals the nonlinear structure.
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several more artifact-free EEG epochs into account, nam
up to eight 20-s epochs per recording in comparison to o
one epoch per day in the previous normative study.

~b! An EEG psychosis group encompassing the EEGs o
persons~4 males, 5 females! measured during each of tw
different functional brain states without medication: psych
sis ~average age 25.3, standard deviation 6.4! and remission
~average age 26.0, standard deviation 5.1!. Details as to the
selection of probands, definitions of schizophrenic psycho
and remission~i.e., full recovery from illness! are given in
@24#.

These data underlie Schmid and Koukkou’s@23# Table 2,
which has been here reinvestigated to yield the parame
b0 andm* for each individual and epoch in both psychos
and remission~whereby at most four 20-s artifact-free e
ochs per individual and state were available!. Figure 4 offers
an example of an EEG segment from the same person

ic

FIG. 3. Electrode positions according to the International 10
scheme.

FIG. 4. EEG segments of the same proband in psychosis~upper
curve! shortly after admission and in remission~lower curve! before
leaving the hospital. Bipolar recording (O1-T5) measured at res
with eyes closed. For better visibility, the curves have an offse
plus and minus 25mV, respectively.
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2118 57RUDOLF M. DÜNKI AND GARY BRUNO SCHMID
psychotic state and then later in remission.

B. Computational methods

The algorithm used for both studies mentioned above
already been described in great detail@22#. Because of its
importance to the present work, we briefly mention here
essential properties and primary results of this algorithm

Special features of our algorithmic method encompass
operator-user–independent, automatic, and reproduc
specification of both an ‘‘optimal’’ time delayt for calculat-
ing embedding vectors as well as an ‘‘optimal’’~scalar in-
variant! plateau region for the extraction of the correlati
dimensionD2. The former is based on simultaneous cons
erations of Theiler’s window parameter@26#, the signal’s au-
tocorrelation timete , and certain requirements concernin
minimal embedding dimension~Fig. 5!. In the case of our

FIG. 5. Delay-time protocol:#Pts,number of points within the
time series;#Vects,number of vectors to be included in the anal
sis; m, embedding dimension;t, delay time;I , length of Theiler’s
@26# window as in@22#; W, time window spanned by one embe
ding vector;J, time window between two successive embedd
vectors;te , time at which the autocorrelation function drops belo
1/e of its initial value;m95%, minimal embedding dimension;m95%

'; D2(m95%) observable; NO, normal exit for chaotic systems; n
disturbance of the signal~e.g., due to noise! may force these exits
s

e

n
le

-

EEG data,t was suggested to be 1. The set ofD2 values for
a sequence of embedding dimensionsm is then parametrized
according to Eq.~1.3!. The outcome for test systems a
sessed this way is shown in Table I. The detailed descript
the many tests for compatibility with other recent embedd
criteria @27–29# and techniques estimating delay times@30–
32#, the assessment of error bars, and outcomes are pres
in @22#.

In this representation, the parameterm* is referred to as
the ‘‘unfolding dimension’’ insofar as it indicates the rate
which an attractor unfolds as the embedding dimension
creases~i.e., the initial rate in Fig. 1!. For the sake of com-
pleteness, we note that the exponential form of the unfold
described in Eq.~1.3! was found heuristically. We therefor
do not exclude the possibility that similar parametrizatio
might also work~see, e.g., Table I, footnote c!. Furthermore
as is the case withD2, m* is not immune to false specifica
tions of the delay timet.

From a theoretical point of view, the relation betweenb0
andm* allows certain inferences about minimal embeddi
criteria @22#. Special emphasis has been given to theb0-m*
relation via two different approaches. The principle under
ing these approaches becomes obvious from Fig. 2. We h
found that the relation betweenb0 andm* can be expressed
in terms of linear regression:

m* 5sb01 i , ~2.1!

using values ofb0 and m* calculated either from differen
segments of~i! surrogate data belonging to one particu
EEG segment@14# and ~ii ! different segments of real dat
from a particular proband. The parameterss and i are then
determined from such a sequence of pairwise measurem
(b0 ,m*). In the first, rather formal approach~i!, the latter are
assumed to be outcomes of different realizations of the s
process, describable as a biparametric population thro
Eq. ~2.1!. Standard statistical techniques are then used to
whether the outcome of the original EEG segment might a
belong to this population or if it should rather be regarded
distinct. An example illustrating this approach is shown
Fig. 2. Our biparametric description thus allows for a su
cessful distinction of raw EEG from its surrogates even

,

TABLE I. Dimension estimates for several test systems.

System b0 @:5 D2(m5`)# m*

Henona 1.23 0.58
Rösslera 1.89 0.53
Lorentza 2.08 1.07
NMR signalb 3.2 2.4c

Mackey-Glassd 7.0 4.3

aSee Table 1 in@22#.
bHyperchaotic region@J. Simonet~private communication!#; see
@40# for details.
cFrom assessmentsD25b* $12exp@(2m/m* )g#%. To estimatem* ,
we made am* vs g plot for variousg.1 and extrapolated it to
g51.
dt5100; T50.1 @41# employing the scheme of Dinget al. @27#.
The result is the average from several runs with 7000 vectors e
distantly sampled from~a! 140 000 and~b! 210 000 iterations.
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57 2119UNFOLDING DIMENSION AND THE SEARCH FOR . . .
cases when traditional dimensional analysis does not en
such discrimination. Hence our treatment provides inform
tion deducible neither from power spectra nor from stand
~uniparametric! dimensional analysis.

Having adressed the distinction between real data an
corresponding surrogates for a given EEG segment, we
turn to ~ii !. This second, clinically related approach to theb0
versusm* relation was found from analysis of EEG se
ments of the same person obtained over five years. Here
concept of the so-called ‘‘confusion index’’ has been appl
@22#. This quantity can be thought of as an ordinal distan
measuring how near the outcomes of one and the same
son are situated to each other. The smaller this distanc
the more related are the outcomes. It has been shown
this concept applied to a threefold estimation of the corre
tion dimension of several persons indicated stochasticity,
no hints for a person’s EEG to be longitudinally stable. Ho
ever, when applying the same approach to the regres
lines ~2.1! defined through the threeb0-m* outcomes, such
longitudinal stability could indeed be retrieved~see espe-
cially Fig. 4 from @22#!. Based on these tests, we decided
choose this algorithm to assess the aforementioned stab
and functionality of the human EEG. Note that we do n
intend to analyze here the surrogate data problem for
collected over an extended time period. This would requ
us to explore the extent to which any longitudinal inform
tion displayed by a nonlinear measure could be availa
from a linear description of the underlying EEG. We conce
trate instead on retrieving this longitudinal information
means of our nonlinear approach. To know that longitudi
information exists is the prerequisite for studying line
and/or nonlinear performance behavior.

III. ASSESSMENT I: LONGITUDINAL STABILITY
AND INTRAINDIVIDUAL SPECIFICITY

The results for the extended EEG normative study
summarized in terms of mean and standard deviation per
and channel@Table II~a!, Fig. 6# as well as correlations mad
intraindividually between days 1 and 2, 1 and 3, and 2 an
@Table II~b!#.

To ensure that only reliable correlations enter into
statistics, certain precautions had to be taken: correlation
efficients may be considerably biased in the presence of
reliable (b0, m* ) pairs. Hence the assessment of slopes and
intercepti from the (b0,m* ) pairs is crucial for our analysis
To assure reliability, each slopes from the set of values$s%
had to satisfy certain quality selection criteria:

~1! Fit reliability: only properly resolved pairs (b0, m* )
were considered~i.e., b0 smaller than the cutoff value indi
cating nonconvergence, no two successive unresolved s
invariant plateaus form>9, total squared difference betwee
fit and experiment, 2.5!.

~2! Statistical reliability:~a! From the EEG epochs of
given day, channel and person~maximum: 8!, at least 5 such
(b0, m* ) pairs must be available and max(b0)2min(b0). 1
fulfilled. ~b! The correlation coefficientr(b0 ,m*) for the
regression curve fitted to these pairs must be greater
0.85.

Failure of one of these criteria led to rejection of the slo
estimate for correlation analysis in roughly 40 % of t
ble
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cases. Since standard statistical tests rely upon a norma
tribution, the apparently skewed distribution of the slopes
~according to the Bowmann-Shenton test@33#! has been cor-
rected with an empirically found variance stabilizing tran
formation:s_:5s/@11(s/c)a#1/a. The constantsa andc are
chosen such that the distribution of the tranformed slopess_
is not significantly different from a normal distribution. Th
transformed slopes thus fulfill the requirements for stand
statistical tests. Accordingly, this approach has advanta
over the alternative use of the confusion index mention
above, where ad hoc assumptions on the distribution ente
into the analysis had to be made.

Our results@cf. Table II~a!, Fig. 6# reveal no significant

TABLE II. ~a! Mean (m) and standard deviation (s) of the
transformed (a510,c52.5, see text! slopess_, for channel 1 (T3-
T5) and channel 2 (T5-O1) ~No. s_ is the number of transformed
slopes available for analysis!. ~b! Intraindividual correlationsr of
s_ between different days (DTime is the time span between day
and day 2; Level is the significance level!.

~a!

Day Channel m(s_) s(s_) No. s_

t1 1 1.75 0.35 5
t1 2 1.72 0.41 10
t2 1 1.55 0.23 9
t2 2 1.59 0.26 13
t3 1 1.70 0.28 10
t3 2 1.68 0.19 9

~b!

Day 1 Day 2 r Level No.s_ DTime

t1 t2 0.69 .95% 10 14d
t1 t3 0.76 >95% 7 5y114d
t2 t3 0.46 n.s. 11 5y
^t11t2& t3 0.51 .95% 16 5y/5y114d

FIG. 6. Statistics of the transformed slopess_ @see Eq.~2.1! and
text to Sec. III#. Mean values~bars! plus one standard deviatio
(T). Day, channel labelings: channel 15 T3-T5, channel 25 T5-
O1; t1 5 reference day,t2 5 t1114 days;t35t215 years.
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differences between channels or days. However, t
showed significant correlations between the outcomes
healthy probands intraindividually between recording da
@cf. Table II~b!#. This is in agreement with earlier finding
based on advanced linear methods@9,34#! and reveals a sta
tistically significant relation of a person’s EEG—record
under these conditions—to itself over periods spanning u
five years. Hence these slopes are to some degree bot
traindividually specific and longitudinally stable and m
thus serve~in the statistical sense! as an individual’s marker

IV. ASSESSMENT II: SPECIFICITY
OF FUNCTIONAL BRAIN STATE

Table 2 of@23# evidences a statistically significant diffe
ence in DD2(m):5^D2(m:P)2D2(m:R)&, interindividu-
ally, between the functional states, psychosis (P) and remis-
sion (R), in terms of the permutation of all individuals fo
each of circa 8 to 10 embedding dimensionsm per EEG
channel. The fact remains, however, that for different fu
tional states, the differences between the asymptotic va
of D2, namely, b0 in the above exponential fit, were no
found to be statistically significant. This leaves open
question as to whether or not the above-mentioned differe
in DD2(m) can be explained in terms of our biparamet
approach.

As a first attempt toward an answer to this question,
applied our biparametric approach to the values underly
the presentation of the above-mentioned Table 2 of@23#. In
particular, we employed the same selection criteria used
correlation as in the normative study of Sec. III@an excep-
tion: data set size required that we relax the number of (b0,
m* ) pairs to 4#. As a result, we have indeed found a signi
cant difference in the mean of allD2(m) curves between
psychosis and remission, thus confirming the abo
mentioned evidence based upon Table 2 of@23#. Moreover,
we did not find any single value ofm at which the mean
difference indicated an opposite sign, i.e., the differen
d(m:P2R):5^D2(m:P)&2^D2(m:R)& was always posi-
tive ~cf. Table III!. Under the null hypothesis of having n
difference at all, we would expect this finding to occur wi
probability < 0.01. We thus accept this difference and a
about its interpretation.

The biparametric view offers three separate explanatio
namely, a difference in the asymptotic correlation dimens
b0, a difference in the unfolding dimensionm* , or a differ-
ence in both. The qualitative behavior of the set
d(m:P2R) differences strongly favors the second explan
tion because of the higher differences for low or intermedi
m ~cf. Table III!. Akaikes information criterion~AIC! offers
a way to decide this question quantitatively. The AIC tries
find a balance between decreasing the sum of square~a
desired property, because the difference between fit and
becomes smaller! and increasing the number of paramete
needed for such a fit~an unwanted property, because it bea
the risk of overfitting!. The balance~best solution! is moni-
tored through the minimum in AIC@35#. When explaining
the meanD2(m) curves in terms of our model, we hav
found satisfactory agreement when either onlym* ~AIC of
222.0, best solution! or both m* and b0 ~AIC of 221.7)
were assumed to be unequal. The worst agreement was
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tained when assuming a difference inb0 ~AIC of 219.0)
only. This suggests that the difference is primarily due to
unfolding properties rather than to the correlation dimens
itself. The fact thatb0 enters as a simple factor andm* as a
factor in an exponential function does not affect this conc
sion because one fits the models to a curve givena priori and
the amount of the parameter difference plays no role, i.e.,
potientially richer behavior due to changes ofm* does not
enter.

V. DISCUSSION

The outcome of our first objective—to extend our norm
tive EEG study—satisfactorily supports the idea mention
at the beginning of the Introduction, namely, that it is po
sible to relate human EEG to the individual from whom it
obtained and that this relation remains stable over time. T
means that biparametric analysis in terms of theb0 versus
m* relationship displays evidence for the longitudinal stab
ity and intraindividual specificity of the human EEG, at lea
over 5 years. This fact conforms to earlier results obtain
with advanced linear approaches@34,9#: depending on the
spectral parameter, correlations between 0.43 and 0.93 w
median of 0.76 were found@36#. Thus our nonlinear method
can be considered to at least redisplay important finding
advanced linear methods. As outlined above, the indica
of intraindividual stability is an essential prerequisite for t
search for diagnostic markers on a per individual basis.

The outcome of our second objective allows us to sh
by means of the biparametric analysis that human EEG
hibits a difference between functional states of the bra
Accordingly, the functional states of remission and psycho
can be considered to be different even under resting co
tions. This result is not trivial to achieve because one ha
retrieve a relatively small effect almost blurred by a lar
amount of intraindividual variability@23# ~due, for example,
to uncontrolled cognition, etc.! We thus emphasize that th

TABLE III. Difference d(m:P2R) @5^D2~m:P!&2^D2~m:R!&#
between the mean value of psychosis@D2(m:P)# and the mean
value of remission@D2(m:R)# vs embedding dimension. A peak fo
intermediate embedding dimensions and a decay for higher em
ding dimensions are in good agreement with the outcome of
difference of two biparametric curves with different unfolding d
mensions but equal correlation dimensions. The third column g
the difference obtained with the best solution~minimum AIC with
b055.4, mpsychosis* 56.17,mremission* 56.90!.

m d(m:P2R) Minimum AIC solution

03 0.03 0.17
04 0.40 0.20
05 0.29 0.21
06 0.24 0.22
07 0.34 0.22
08 0.36 0.22
09 0.05 0.21
10 0.25 0.20
11 0.03 0.19
12 0.25 0.18
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intraindividual distinction of the two functional states re
mains to be proven.

On the one hand, this is in agreement with the results
@24# according to which average values of certain EEG sp
tral parameters turned out to be different between group
patients recorded during psychosis and remission under
vated conditions. On the other hand, the impact of our fi
ing goes further: our results indicate a difference betw
unmedicated psychosis and remission in the functional s
of resting EEG with eyes closed. Without diving too de
into brain science, we may point out certain possible imp
cations of these findings: the differences found here betw
the functional states of psychosis and remission in EEG
corded at rest seem to indicate a difference in the dynam
of the EEG generator independent of any particular c
trolled information processing. This complements other
forts, which focus primarily upon EEG recorded under ac
vated conditions~cf. @37#!. Furthermore, an indication o
dynamically different resting brain states, schizophrenia v
sus remission, in the absence of external activation or in
mation acquisition may point to permanent differences c
cerning uncontrolled cognition or may even be a hint
problems on some deeper functional level.

Whatever the exact biomedical explanation might
such differences are not expected by theories explain
schizophrenia primarily as a disturbance of mental direc
attention. These theories hypothesize that differences in E
reactivity between functional states of schizophrenia and
mission are expressions of disturbances to activated or in
tional information processing of the brain and have be
investigated in detail elsewhere from both a classic
spectral-analytical@24# and nonlinear, dynamical@37,38#
point of view.

With regard to methodology, our biparametricb0-m* ap-
proach introduces important new perspectives of releva
for the dimensional analysis of EEG in cases where the c
sical uniparametric approach seems questionable. We w
like to emphasize that our results indicate the superiority
this biparametrization over classical dimensional approac
.
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and suggests its use especially for analyses of biomed
time series.

VI. OUTLOOK

The question as to what extent the longitudinal inform
tion displayed by our nonlinear measure might already
available from a linear description of the underlying EEG
not adressed here and may be the focus of a forthcom
study. We intend furthermore to follow up the apparent d
namic intraindividual difference between functional bra
states found here for the EEG recorded under the condi
of quiet wakefulness with eyes closed in~unmedicated! psy-
chotic and remitted schizophrenic patients. In addition
also want to investigate EEG epochs recorded under defi
activational conditions with our approach. Hence our inte
tion is ~1! to improve discrimination intraindividually be
tween psychosis and remission and~2! to test, in view of our
results, certain hypotheses concerning schizophrenia a
expression of a disturbance to the passive, quiet wakefuln
of the brain, on the one hand, and to the active or intentio
information processing of the brain, on the other~cf. @39#!.
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